
Heat transfer: conduction (in 
steady and unsteady state), 
extending surfaces, 
convection + radiation

Professor Nelu Cristian CHERECHES
Technical University “Gheorghe Asachi” from Iasi, ROMANIA



CONVECTIVE HEAT TRANSFER
Convection involves the transfer of heat by the motion and mixing of

‘macroscopic" portions of a fluid (that is, the flow of a fluid past a solid boundary).

The term natural convection is used if this motion and mixing is caused by

density variations resulting from temperature differences within the fluid. The

term forced convection is used if this motion and mixing is caused by an outside

force, such as a pump. The transfer of heat from a hot water radiator to a room is

an example of heat transfer by natural convection. The transfer of heat from the

surface of a heat exchanger to the bulk of a fluid being pumped through the heat

exchanger is an example of forced convection.

Heat transfer by convection is more difficult to analyze than heat

transfer by conduction because no single property of the heat transfer medium,

such as thermal conductivity, can be defined to describe the mechanism. Heat

transfer by convection varies from situation to situation (upon the fluid flow

conditions), and it is frequently coupled with the mode of fluid flow. In practice,

analysis of heat transfer by convection is treated empirically (by direct

observation).



Convection heat transfer is treated empirically because of 

the factors that affect the stagnant film thickness:

•Fluid velocity

•Fluid viscosity

•Heat flux

•Surface roughness

•Type of flow (single-phase/two-phase)



Ludwig Prandtl (1875–1953).
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Osborne Reynolds (1842 to 1912)

Reynolds was born in Ireland but he

taught at the University of Manchester.

He was a significant contributor to the

subject of fluid mechanics in the late

19th C. 
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Ernst Kraft Wilhelm Nusselt

(1882–1957). This photograph, provided

by his student, G. Lück, shows Nusselt at

the Kesselberg waterfall in 1912. He was

an avid mountain climber.
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CONDUCTIVE HEAT TRANSFER

Conduction involves the transfer of heat by the interaction between

adjacent molecules of a material. Heat transfer by conduction is dependent upon

the driving "force" of temperature difference and the resistance to heat transfer.

The resistance to heat transfer is dependent upon the nature and dimensions of

the heat transfer medium. All heat transfer problems involve the temperature

difference, the geometry, and the physical properties of the object being studied.

In conduction heat transfer problems, the object being studied is usually a solid.

Convection problems involve a fluid medium. Radiation heat transfer problems

involve either solid or fluid surfaces, separated by a gas, vapor, or vacuum.

There are several ways to correlate the geometry, physical properties,

and temperature difference of an object with the rate of heat transfer through

the object. In conduction heat transfer, the most common means of correlation is

through Fourier’s Law of Conduction. The law, in its equation form, is used most

often in its rectangular or cylindrical form



The effects of heat are subject to 

constant laws which cannot be 

discovered without the aid of 

mathematical analysis. The object 

of the theory which we are about to 

explain is to demonstrate these 

laws; it reduces all physical 

researches on the propagation of 

heat to problems of the calculus 

whose elements are given by 

experiment.

The Analytical Theory of Heat, J. 

Fourier, 1822 Baron Jean Baptiste Joseph Fourier 

(1768–1830).

qs = -  dt / dx, (W / m2)
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RADIATIVE HEAT TRANSFER

Radiant heat transfer involves the transfer of heat by

electromagnetic radiation that arises due to the temperature of a body.

Most energy of this type is in the infra-red region of the electromagnetic

spectrum although some of it is in the visible region. The term thermal

radiation is frequently used to distinguish this form of electromagnetic

radiation from other forms, such as radio waves, x-rays, or gamma rays.

The transfer of heat from a fireplace across a room in the line of sight is an

example of radiant heat transfer.

Radiant heat transfer does not need a medium, such as air or

metal, to take place. Any material that has a temperature above absolute

zero gives off some radiant energy. When a cloud covers the sun, both its

heat and light diminish. This is one of the most familiar examples of heat

transfer by thermal radiation.



The Stefan–Boltzmann law is an example of a power law.

The law was deduced by Jožef Stefan in 1879 on the basis of experimental

measurements made by John Tyndall and was derived from theoretical

considerations, using thermodynamics, by Stefan's student Ludwig Boltzmann in

1884. Boltzmann treated a certain ideal heat engine with the light as a working

matter instead of the gas. The law is valid only for ideal black objects, the perfect

radiators, called black bodies. Stefan published this law on March 20 in the article

Über die Beziehung zwischen der Wärmestrahlung und der Temperatur (On the

relationship between thermal radiation and temperature) in the Bulletins from the

sessions of the Vienna Academy of Sciences.

Jožef Stefan 

(1835-1893)
Ludwig Boltzmann

(1844-1906)
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APLICATIONS

OF

CONDUCTIVE HEAT TRANSFER

IN 

HEATED ENCLOSURES



-Heat transfer in heated walls

-Heat transfer inside the parts

-Extending surfaces



Heat transfer in heated walls
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Poisson equation, in steady regime:

Laplace equation, in steady regime and 

without internal heating sources



For heat transfer in walls it consider Laplace equation, in steady regime 

and without internal heating sources, in one-dimensional space.
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at x = 0, t = t1,

at x = d, t = t2.

It get:

C1 = - (t1 – t2 ) / d; C2 = t1,

Finally:

t (x) = t1 – ( t1 – t2 ) x / d.
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Equivalent Resistance Method

It is possible to compare heat transfer to current flow in electrical circuits. The heat

transfer rate may be considered as a current flow and the combination of thermal

conductivity, thickness of material, and area as a resistance to this flow. The

temperature difference is the potential or driving function for the heat flow, resulting

in the Fourier equation being written in a form similar to Ohm’s Law of Electrical

Circuit Theory. If the thermal resistance term Dx/ is written as a resistance term

where the resistance is the reciprocal of the thermal conductivity divided by the

thickness of the material, the result is the conduction equation being analogous to

electrical systems or networks. The electrical analogy may be used to solve

complex problems involving both series and parallel thermal resistances.

A typical conduction problem in its analogous electrical form is given in the

following example, where the "electrical" Fourier equation may be written as

follows.

I = DU/Re; qs = Dt/R. 
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Heat transfer in heated parts

General equation, in unsteady regime:
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In this case is very hard to solve an equation like this. So, it consider the balance heat 

equation : 
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This relation can permit finding  or time . 

Further, it can define the criteria’s : 

Fourier:  Fo = a/x1
2      Biot:   Bi = x1/  

For larger parts, the Fo criteria gives no reasonable interpretation. So. it is used 

another criteria, Boussineq: 
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Extending surfaces: fin design

The purpose of fins

The convective removal of heat from a surface can be substantially improved if we

put extensions on that surface to increase its area. These extensions can take a

variety of forms. Figures, for example, shows many different ways in which the

surface of commercial heat exchanger tubing can be extended with protrusions of a

kind we call fins.



Figure shows another very interesting

application of fins in a heat exchanger design.

This picture is taken from an issue of Science

Magazine, which presents an intriguing

argument by Farlow, Thompson, and Rosner.

They offered evidence suggesting that the

strange rows of fins on the back of the

Stegosaurus were used to shed excess body

heat after strenuous activity, which is

consistent with recent suspicions that

Stegosaurus was warm-blooded.

These examples involve some rather

complicated fins. But the analysis of a straight

fin protruding from a wall displays the

essential features of all fin behavior. This

analysis has direct application to a host of

problems.



The extension of heat exchange surface is used as an intensification method of

convection processes for the fluids that realize small convection coefficients like

gases. According to Newton relation Q = S ( tp – tf), for a given difference

between the wall and fluid temperature and a low value of  coefficient, the

increase of heat flow Q can be done by increasing surface S.

The extension of heat exchange surface makes with the help of some fins with

different geometric shapes (longitudinal, radial, acicular, etc.) attached to a

support surface (basic) made of the same material with support wall or of

different materials.

The calculus is based on the following simplifier hypotheses:

1. thermal regime is constant in time;

2. thermal conductivity of fins material  = const.;

3. the fin is cooled by a fluid with uniform temperature tf = const.,

convection coefficient is constant on the entire fin surface,  = const.;

4. the temperature of fin’s base is uniform, there are no contact heat

resistances between fin and support wall;

5. the thickness of the fin is small comparing to its height so that

temperature gradients can be neglected;

6. there are no interior heat sources in the fin, qv = 0.



Based on these hypotheses heat transfer through fin will be

unidirectional conduction with convection.

The variable transversal section fin.

It is considered a fin with variable transversal section

S = S(x)

and variable perimeter

P = P(x),

in contact with a fluid with temperature

tf = constant

and its convection coefficient

= constant

In a certain transversal section, including its lateral perimeter, the fin’s

temperature is the same:

t = t(x) > tf.

The temperature of fin’s base is t0 = constant.





For volume element of dx thickness from the rib it can be written the next thermal 

balance: 

Qx = Qx+dx + dQconv,  

where: Qx is heat flux that crosses x plan; 

Qx+dx – heat flux that crosses x+dx plan; 

dQconv – heat flux transmitted to the fluid through convection. 

dx

dt
SQx      
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dQconv =  P dx ( t – tf )      



It is obtained the differential equation after the balance calculus:  

0)(
1

2

2





 ftt

S

P

dx

dt

dx

dS

Sdx

td
.    

If we introduce variable exchange  = t – tf, where represents temperature excess 

between wall and fluid in 
0
C, and the report is noted as m

2
 =  P /  S, ( m

-2
 ); where: 

S

P
xmm




 )( , (m

-1
). 

The differential equation gets the general form 

0
1 2

2

2







m
dx

d

dx

dS

Sdx

d
.  



The constant transversal section rib. For this type belongs the straight rib with constant thickness 

with rectangular profile. For it, S = const., so that differential equation has the form 
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The optimum profile

Usually, the fins are made of materials with high thermal conductivities or

corrosion resistant, both cases being very expensive. That is why it is

searched the accomplishment of some fins with minimum metal

consumption for a certain quantity of heat.

The problem consists in determining the longitudinal profile of the fin so that

unitary thermal flow transmitted through conduction remains constant from

where it results that d/dx = C1 = const. So, we have  = C1x + C2,

respectively a linear variation of the difference between lateral surface and

fluid temperatures.

The only longitudinal fin that has a linear distribution of temperature

difference  is concave parabolic fin which fulfills the condition of minimum

material consumption.



Technologically the execution of a longitudinal concave fin is difficult. In

addition this profile has a low mechanical resistance. Taking into consideration

that weight difference between a concave fin and a triangular one is very small,

the latest being easy to realize, it can be accepted for practice use a triangular

fin as an optimum form. Also from resistance motives the triangular fin is

modified as a trapezoidal fin.



Radial fins. In the general case of a radial fin with a certain profile, the 

differential equation of temperature distribution in the fin is similarly fixed by 

getting
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where y = y (r) is fin’s thickness variable with r radius.

Acicular fins (bar type). Acicular fins are longitudinal fins bar type with finite 

dimensions of transversal section small in comparison with fin’s height.



APLICATIONS

OF

CONVECTIVE + RADIATIVE 
HEAT TRANSFER

IN 

HEATED ENCLOSURES



In this case, let us consider the heat 

transfer in a heated enclosure, with direct 

application to industrial furnaces.

Let us make some notations:

 tg – gas temperature;

 tb – walls temperature

 tp – part temperature;

 Qp – part heat

 Qgp – radiation+convection heat from

gases to part;

 Qgb - radiation+convection heat from

gases to walls;

 Qbg - radiation heat from walls to

gases;

 Qbp = Qgb - Qbg - radiation heat from

wall to part;

 Qa, Qtp – heat losses through walls.



In an industrial heating process, the parts heating respect the relation:

Qp = Qgp + Qbp

This heat received is the basis equation for designing the equipment

because it gets information about the time needed for completing the process

For calculating Qp it need further notations:

Sb – walls inner surface;

Sp – parts exterior surface;

b – convection coefficient towards walls;

p - convection coefficient towards parts;

gb - radiation coefficient between gases and walls ;

bp - radiation coefficient between walls and parts;

gp - radiation coefficient between gases and parts;

eb – walls emission coefficient;

ep – parts emission coefficient.



The heat received by the walls from gases can be:

   bgbgbbbgbbgb ttSttSQ e

For a steady state regime, the heat losses are:

Qa = 0

Qtp = Sb qb

where:

qb – heat losses by untights.

From figure it can say:

Qgb= Qtp + Qa + Qbg + Qbp
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Furthermore:

is the radiation coefficient of gases at walls temperature



The heat radiated between parts and wall is: 

Qbp = Q
/
bp – Qbg, 

and: 

   pbgbpbbpbppbp ttSQ ee  

The heat received by parts from gases is: 

   pgpppggpppgp ttSttSQ e  

Using the relation: 

 Qp =  Qbp + Qgp  

it get: 
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Finally: 
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In the case of multilayer parts, it can write:

• in rectangular parts:

• in cylindrical parts:




