Technical University "Gheorghe Asachi" of Iasi

Faculty of Civil Engineering and Building Services

HEAT TRANSFER INSIDE THE COOLING CIRCUIT OF A POWER TRANSFORMER

Nelu - Cristian CHERECHES

Faculty of Civil Engineering and Building Services Department of Building Services Engineering cristian.chereches@tuiasi.ro, 0040 232 70 12 65

by the marune marune to the marune marune marune to the marune mar

Summary

>Objectives

- Description of thermoconvective model
- Steady state
- Experimental simulations
- Unsteady state
- Optimal spacing between vertical flat plates
- Selection criteria for distinguishing different convection regimes
- Conclusions

Numerical part

Partie fondamentale

Objectives

> Analysing the fluid flow and heat transfer in steady and unsteady state

- Optimising the heat transfer and reducing the temperature of hot points in steady state
- Validation the assumptions made in the modeling of experimental tests

- Calculate the optimal spacing of a channel between two vertical flat plates in mixed convection
- **Study** different criteria to distinguish different convective regimes

Summary

>Objectives

- Description of thermoconvective model
- Steady state
- Experimental simulations
- Unsteady state
- Optimal spacing between vertical flat plates
- Selection criteria for distinguishing different convection regimes
- Conclusions

Description of electrical power transformer

Three-phase electric power transformer of 40 MVA made by S.C. ELECTROPUTERE CRAIOVA

- Apparent power: S = 40 MVA ;
- > Primary and secondary rated voltage: $U_1 = 110 \text{ kV}$, $U_2 = 20,5 \text{ kV}$
- > Primary and secondary rated current: $I_1 = 209,95 \text{ A}, I_2 = 650,41 \text{ A}$

Description of thermoconvective model

Geometry of the studied model

Assumptions

- > 2D-axisymmetric problem
- Mixed convection in steady and unsteady state
- Ascending and laminar flow
- Uniform velocities imposed on the input of the transformer
- Convective exchange with ambient air
- Flux densities or volumic source imposed uniform
- Dependent thermophysical properties of the oil temperature

Description of thermoconvective model

Limits of heating

Solved equations

✓ Continuity equation :

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho U)}{\partial x} + \frac{1}{r} \frac{\partial (r\rho V)}{\partial r} = 0$$

✓ Equations of momentum:

$$\frac{\partial(\rho U)}{\partial t} + U \frac{\partial(\rho U)}{\partial x} + V \frac{\partial(\rho U)}{\partial r} = \rho g_x - \frac{\partial p}{\partial r} + \frac{\partial}{\partial x} \left(\mu \frac{\partial U}{\partial x} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r \mu \frac{\partial U}{\partial r} \right)$$
$$\frac{\partial(\rho V)}{\partial t} + U \frac{\partial(\rho V)}{\partial x} + V \frac{\partial(\rho V)}{\partial r} = -\frac{\partial p}{\partial r} + \frac{\partial}{\partial x} \left(\mu \frac{\partial V}{\partial x} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r \mu \frac{\partial V}{\partial r} \right)$$

✓ Energy equation:

$$\frac{\partial(\rho T)}{\partial t} + U \frac{\partial(C_p \rho T)}{\partial x} + V \frac{\partial(C_p \rho T)}{\partial r} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r \lambda \frac{\partial T}{\partial r} \right)$$

Co-funded by the Erasmus+ Programme of the European Union

8

Description of thermoconvective model

Discretization of the computational domain

Non-uniform structured grid (781 imes 418 cells)

Co-funded by the Erasmus+ Programme of the European Union

9

Summary

>Objectives

- Description of thermoconvective model
- Steady state
- Experimental simulations
- Unsteady state
- Optimal spacing between vertical flat plates
- Selection criteria for distinguishing different convection regimes
- ≻Conclusions

Steady state

CAS **SS**' uniform flux density imposed on the Exit surfaces of the active parts **Primary wind** Secondary Core wind

Entrance

Uniform source imposed within the active parts

Co-funded by the Erasmus+ Programme of the European Union

Steady state→ **Imposed flux density**

CASE 5

Co-funded by the Erasmus+ Programme of the European Union

Temperature field and streamlines

Co-funded by the Erasmus+ Programme of the European Union

Flow volume in each channel

Mixing temperature at the outlet of each channel

Maximum temperature of the walls of each channel

Reynolds number in the middle section of each channel

Thermal pressure coefficient in the middle of each channel

Steady state \rightarrow *Imposed flux density* \rightarrow *CASE* 14

CASE 14

Co-funded by the Erasmus+ Programme of the European Union

Temperature field and streamlines

Volume flow rate inside each channel

Maximum temperature on the walls of each channel

Comparisons between different cases

Maximum temperature calculating inside the power transformer

CASE 5'

Temperature field and streamlines

CASE 14'

Temperature field and streamlines

27

Conclusions

- The flow of oil inside of such a system is very complex and recirculations may occur
- The hotspots were located on:
 - the surfaces of the secondary winding in the case of a flux density
 - Inside the secondary windings in the case of a volume source.
- > The limit of 98 °C is respected in the *case 14* where:
 - a big obstacle is placed closer to the entrance
 - the longitudinal insulations are moved inside the channel
 - the oil velocity at the entrance of the power transformer is 1,2 m.s⁻¹
- Temperatures are overestimated in the case of a flux density compared to the case of a volume source

Summary

>Objectives

- Description of thermoconvective model
- Steady state
- Experimental simulations
- Unsteady state
- Optimal spacing between vertical flat plates
- Selection criteria for distinguishing different convection regimes
- ≻Conclusions

Experimental simulations

ELECTROPUTERE CRAIOVA

Determining the average temperature of the windings

Method of electrical resistance variation :

$$T_2 = \frac{R_2}{R_1} (235 + T_1) - 235$$

Measuring the temperature of the mineral oil to the output of the transformer

Comparison between experimental and numerical results

Co-funded by the Erasmus+ Programme of the European Union

Summary

>Objectives

- Description of thermoconvective model
- Steady state
- Experimental simulations
- Unsteady state
- Optimal spacing between vertical flat plates
- Selection criteria for distinguishing different convection regimes
- ≻Conclusions

Unsteady state

CASE 5'

CASE 5 and 5'

Variation of *maximum temperature* at inside the electrical power transformer during one hour

Temperature field at superior part of the transformer during one hour for $U = 1,20 \text{ m.s}^{-1}$

Streamlines at superior part of the transformer during one hour for $U = 1,20 \text{ m.s}^{-1}$

CASE 14'

Temperature field at superior part of the transformer during one hour for $U = 1,20 \text{ m.s}^{-1}$

Streamlines at superior part of the transformer during one hour for $U = 1,20 \text{ m.s}^{-1}$

Conclusions

- The temporal evolution of the hot spot temperature is:
 - gradually in the case of a bulk source
 - abruptly in the case of a flux density
- Hot spots are always located within the secondary winding

The hot spot temperature does not exceed the limit of 140 °C imposed in transient state

Summary

>Objectives

- Description of thermoconvective model
- >Steady state
- Experimental simulation
- **Wnsteady state**
- Optimal spacing between vertical flat plates
- Selection criteria for distinguishing different convection regimes
- ≻Conclusions

Optimal spacing between vertical flat plates

Assumptions

Assisted mixed convection in steady state

- Velocity and temperature of fluid uniformly imposed at the entrance
- Convective heat transfer on smooth surfaces
- > Uniform flux density imposed on the walls
- > thermo-physical properties of the fluid are independent of temperature

Optimal spacing between vertical flat plates

Optimal distance

¹ A. Bejan, "Shape and Structure, from Engineering to Nature", Cambridge University Press

Co-funded by the Erasmus+ Programme of the European Union

Optimal spacing and spacings used in **cas 14** for each channel and different convective regimes

Co-funded by the Erasmus+ Programme of the European Union

Summary

>Objectives

- Description of thermoconvective model
- Steady state
- Experimental simulations
- Unsteady state
- Optimal spacing between vertical flat plates
- Selection criteria for distinguishing different convection regimes
- ≻Conclusions

>Uniform temperatures imposed on the walls

- Ist : comparison of the friction stresses on the walls
- IInd : comparison of gravitational and viscous forces
- IIIrd : comparison of gravitational forces and pressure forces
- IVth : comparison of the total gravitational and kinetic energies

> Uniform flux densities imposed on the walls:

- IInd : comparison of gravitational and viscous forces
- IIIrd : comparison of gravitational forces and pressure forces

Selection criteria for distinguishing different convection regimes

Uniform temperatures

Assumptions

- Uniform temperatures imposed on the walls
- Assisted mixed convection in steady state
- Laminar and ascending flow
- Velocity and temperature of fluid imposed at the entrance
- thermo-physical properties of the fluid are independent of temperature.

Boundary conditions:

 $y = 0 : T = T_1 ; U = 0$

 $y = e : T = T_2 ; U = 0$

Co-funded by the Erasmus+ Programme of the European Union

Selection criteria for distinguishing different convection regimes → Température uniforme imposée

Continuity equations :

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0$$

$$\rightarrow V = cte = 0$$

✓ Energy equation :

$$U\frac{\partial T}{\partial x} + V\frac{\partial T}{\partial y} = a\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right)$$

$$\rightarrow 0 = \frac{d^2 T}{d v^2}$$

Selection criteria for distinguishing different convection regimes

→ Température uniforme imposée

Ist criterion: comparison of the friction stresses on the walls

Natural convection $\frac{\tau_{p1} - \tau_{p2}}{\tau_{p1}} < 10\% \rightarrow (RiRe) \ge 5472$

Forced convection

$$\frac{\tau_{p1} + \tau_{p2}}{\tau_{p1}} < 10\% \rightarrow \text{(RiRe)} \le 15,2$$

IInd criterion: comparison of gravitational and viscous forces

Co-funded by the Erasmus+ Programme of the European Union

Illrd criterion : comparison of gravitational forces and pressure forces

<u>V</u> IVth criterion : comparison of the total gravitational and kinetic energies

$$K_{e} = \frac{(RiRe)_{e}}{\sqrt{580608 + (RiRe)_{e}^{2}}} \rightarrow (RiRe)_{e} = \frac{762 K_{e}}{\sqrt{1 - K_{e}^{2}}}$$
NATURAL CONVECTION
$$K_{e} > 0.95 \rightarrow (RiRe)_{e} \ge 2318$$
FORCED CONVECTION
$$K_{e} < 0.05 \rightarrow (RiRe)_{e} \le 38,2$$

(*RiRe*)_e number corresponding to each criterion for uniform imposed temperature

Transition	First criterion	Second criterion	Third criterion	Fourth criterion
Mixed / natural convection	5 472	505, 9	3 325,6	2 318
Mixed / forced convection	15,2	8,3	8,3	38,2

Flux density uniformly imposed

Ilnd criterion: comparison of gravitational and viscous forces

$$P^{2} = \frac{\overline{a^{2}}}{\overline{c^{2}}} = \frac{1,06.10^{-7}(892786 + (Ri Re)_{e}^{*})^{2}}{(299935 + (Ri Re)_{e}^{*})^{2}} (Ri Re)_{e}^{*2} \qquad (Ri Re)_{e}^{*} = 34058 + 85126\sqrt{16 - P}$$

$$NATURAL \ CONVECTION$$

$$P > 0,95 \rightarrow (RiRe)_{e}^{*} \ge 10261$$

$$P < 0,05 \rightarrow (RiRe)_{e}^{*} \le 53,2$$

Illrd criterion : comparison of gravitational forces and pressure forces

$$\Gamma^{2} = \frac{\overline{a^{2}}}{\overline{c^{2}}} = 1,70.10^{-14} (Ri Re)_{e}^{*^{2}} (1,2.10^{-5} (Ri Re)_{e}^{*} + 0,082)^{2} (892786 + (Ri Re)_{e}^{*})^{2}$$

NATURAL CONVECTION

 $\Gamma > 0,95 \rightarrow (\mathbf{RiRe}) \geq \mathbf{873,6}$

FORCED CONVECTION

$$\Gamma < 0.05 \rightarrow (\text{RiRe})^* \leq 51.9$$

Thermal pressure coefficient corresponding to different selection criteria in case 14 for oil velocity at the entrance of 1,2 m.s⁻¹

Summary

Objectives

- Description of thermoconvective model
- Steady state
- Experimental simulation
- Unsteady state
- Optimal spacing between vertical flat plates
- Selection criteria for distinguishing different convection regimes
- ≻Conclusions

Conclusions

- Using an obstacle to direct the oil from entering the transformer helps to cool its active parts at lower cost
- The comparison of numerical and experimental results shows good agreement with lower spreads 10%
- The hypothesis of a flux density imposed on surfaces that were justified in the steady state is no longer valid in the transient state
- The semi-analytical analysis of the optimal spacing showed that the heat transfer is more effective within narrow channels
- The heat transfer inside narrow channels is realized by mixed convection while in the wider channels by natural convection

THANK YOU

Co-funded by the Erasmus+ Programme of the European Union

