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Objectives

Analysing the fluid flow and heat transfer in steady and unsteady state

Optimising the heat transfer and reducing the temperature of hot points
In steady state

Validation the assumptions made in the modeling of experimental tests

Calculate the optimal spacing of a channel between two vertical flat
plates in mixed convection

Study different criteria to distinguish different convective regimes
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Description of thermoconvective model

Description of electrical power transformer

Three-phase electric power transformer of 40 MVA made by
S.C. ELECTROPUTERE CRAIOVA

d -

» Apparent power: S =40 MVA ;
» Primary and secondary rated voltage: U, = 110 kV, U, = 20,5 kV
» Primary and secondary rated current: I, = 209,95 A, |, = 650,41 A



Description of thermoconvective model

Geometry of the studied model
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6 velocities imposed at the entrance
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Oil temperature, T =65 °C

Assumptions

» 2D-axisymmetric problem

» Mixed convection in steady and
unsteady state

» Ascending and laminar flow

» Uniform velocities imposed on the
input of the transformer

» Convective exchange with ambient air

> Flux densities or volumic source
iImposed uniform

» Dependent thermophysical properties
of the oil temperature



Description of thermoconvective model

Limits of heating

Steady state

Hot point
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Description of thermoconvective model

Solved equations

v’ Continuity equation :

op , AM) 1arpV)_,
ot OX r or

v Equations of momentum:

M), ,AAN) ,, A) 8p+8(ﬂﬁuj+1g(r aUJ
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ot OX or or ox\' ox r or or

v’ Energy equation:

ApT) , ACPT) |, ACPT)_ 3
o oX o X
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Description of thermoconvective model

Discretization of the computational domain

Vdrtumideositge
Channels Channels
2a 2b Channel 3 4a 4b
v v ¥

T!
Longitudinal Superior Secondary
insulation insulation wind

Non-uniform
structured grid
(781 X 418 cells)
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Steady state

uniform flux density CAS a¥ Uniform source
Imposed on the <— Imposed within the
surfaces of the Exit active parts
active parts I I |
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Steady state— Imposed flux density

CASE 5

<
Exit
I I
O\
N 2a,b 3 4a,b b5 6 7
Entrance
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Steady state — Imposed flux density — CASE 5

Temperature field and streamlines

T, . =R U = 0,86 m.s?
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Steady state — Imposed flux density — CASE 5

Flow volume in each channel
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Steady state — Imposed flux density — CASE 5

Température de mélange, T,, (°C)
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Steady state — Imposed flux density — CASE 5

Température maximale, T4 (°C)

Maximum temperature of the walls of each channel
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Steady state — Imposed flux density — CASE 5

Reynolds number in the middle section of each channel
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Steady state — Imposed flux density — CASE 5

RiRe

Coefficient de pousée thermique
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Steady state — Imposed flux density — CASE 14

CASE 14
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Steady state — Imposed flux density — CASE 14
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Steady state — Imposed flux density — CASE 14

Débit-volume, g, (m3.s'1)
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Steady state — Imposed flux density — CASE 14

Température maximale, T, (CC)
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Steady state — Imposed flux density

Comparisons between different cases

Maximum temperature calculating inside the power transformer
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Steady state — Volumic source of heat

CASE %’

Temperature field and streamlines

Tmax = 96,4 °C U=1,20m.st
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Steady state

Température maximale, T4 (°C)

Maximum temperature on the walls of each channel for flow

velocity of 1,2 m.s*?
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Steady state — Volumic source of heat

115.0

112.0
108.0
108.0

103.0
100.0
g7.0
84.0
891.0
g8.0
85.0
l 82.0
79.0
76.0
730
70.0
B7.0
B4.0
B1.0
58.0
55.0

Inlet

CASE 14’

Temperature field and streamlines

Tmax = 95,4 °C U= 1,20 m.s1!

<
Outlet

<—
— =

26



Steady state

o

Température maximale, T, ((C)

Maximum temperatures on the walls of each channel for flow

velocity of 1,2 m.s*?
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Conclusions

The flow of oil inside of such a system is very complex and
recirculations may occur

The hotspots were located on:
- the surfaces of the secondary winding in the case of a flux density
- Inside the secondary windings in the case of a volume source.

The limit of 98 °C is respected in the case 14 where:
- a big obstacle is placed closer to the entrance
- the longitudinal insulations are moved inside the channel
- the oil velocity at the entrance of the power transformer is 1,2 m.s!

Temperatures are overestimated in the case of a flux density

compared to the case of a volume source
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Experimental simulations

CASE 5
<— ELECTROPUTERE CRAIOVA
Outlet
1 1 » Determining the average temperature
of the windings
mbient air Method of electrical resistance variation :
N T=20°C
2a,b ©-°3 - 4ab S\JL6N] 7
T, :&(235 +T,)—235
R,

» Measuring the temperature of the
mineral oil to the output of the
transformer

Inlet N
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Experimental simulations

Comparison between experimental and numerical results
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Unsteady state

Overload of 60% (I,=1,61) — Q. =2,56 Q,
CASE %’ CASE 14’

o | o o | e
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Unsteady state

CASE 5and %’

Variation of maximum temperature at inside the electrical power
transformer during one hour
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Unsteady state — Volumic source of heat - CASE §’

Temperature field at superior part of the transformer during
one hour for U=1,20 m.s"1
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Unsteady state — VVolumic source of heat - CASE §’

Streamlines at superior part of the transformer during one
hour for U =1,20 m.s"!
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Unsteady state C ASE 1 4!

Temperature field at superior part of the transformer during
one hour for U=1,20 m.s"1
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Unsteady state — Volumic source of heat - CASE 14’

Streamlines at superior part of the transformer during one
hour for U =1,20 m.s
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Conclusions

The temporal evolution of the hot spot temperature is:
- gradually in the case of a bulk source
- abruptly in the case of a flux density

Hot spots are always located within the secondary winding

The hot spot temperature does not exceed the limit of 140 °C imposed
In transient state
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Optimal spacing between vertical flat plates

Assumptions

»Assisted mixed convection in steady state

»Ascending and laminar flow

® o » Velocity and temperature of fluid uniformly
gl Imposed at the entrance

Hl o e ’y » Convective heat transfer on smooth surfaces

J I » Uniform flux density imposed on the walls

Vy T, > thermo-physical properties of the fluid are
independent of temperature
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Optimal spacing between vertical flat plates

Narrow spacing Optimal spacing Large spacing

:

I Tme I Tme I Tme

Qu =V,epC, (T, —T,,) Q. =2HN(T,-T,)
iy it
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Qy =B, AT 2€°H ™ {0,04+o,04[1+o,0579 Nfug ej ] = Q, :14,76I%ﬂ2[1+0,05(ﬁ;/%ﬂ2)%]v AT -T)

A vAa
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Optimal spacing between vertical flat plates

Optimal distance

v Mixed convection : Re,, R Re,.
- —A Y2 — —A— o 35 1/3 -11/3
2 —
Vel | 11 40,05 989H" (Ve By
: i ’ Ap H?
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€ ope H au
0,04+o,04(1+o,057p9ﬂﬁ”:___p,t, J
Ap A

v’ Natural convection?

Ra,
/—%

nopt

va

v’ Forced convection? :

Be,,
K_H

efopt ZZJH(Ap H j
ua

L A. Bejan, "Shape and Structure, from Engineering to
Nature", Cambridge University Press
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Optimal spacing between vertical flat plates

Optimal spacing and spacings used in cas 14 for each channel and
different convective regimes
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Selection criteria

»Uniform temperatures imposed on the walls

« ISt . comparison of the friction stresses on the walls
« [I"d : comparison of gravitational and viscous forces
« [II"M : comparison of gravitational forces and pressure forces

« [Vth : comparison of the total gravitational and kinetic energies

»Uniform flux densities imposed on the walls:

« [I"d : comparison of gravitational and viscous forces
« [IIM : comparison of gravitational forces and pressure forces
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Selection criteria for distinguishing different convection regimes

Uniform temperatures

Assumptions

T,>T,
X » Uniform temperatures iimposed on the walls
»Assisted mixed convection in steady state
g LK T, »Laminar and ascending flow
l » Velocity and temperature of fluid imposed at the
0 ell "y entrance

» thermo-physical properties of the fluid are
Independent of temperature.

Boundary conditions:
y=0:T=T,;U=0
y=e:T=T,;U=0
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Selection criteria for distinguishing different convection regimes
— Température uniforme imposée

v’ Continuity equations :

ou 8V

-0 — V =cte=0
x 8y
) a) Gravitational c) Viscous
v/ Momentum equations: forces forces

oU . ouU T.+T,) 10p (U oU T,+T,) 1dp d%U
U—+V =gﬂ(T —¥)———+v( —+ zj — 0= (T 4= 2)—— +v

X oy 2 p X X oy 97 2 pdx dy?
oy _ 1, V(azv2+62v2j S 0=2

X oy poy ox" 0y oy

v’ Energy equation :

or ., oT (82T 8ZTJ

U—+V— 2 + 2
OX oy \ox* oy |
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Selection criteria for distinguishing different convection regimes

— lemperature uniforme imposee
»IStcriterion: comparison of the friction stresses on the walls

Tpl

72 10% — (RiRe) > 5472

T

pl

Natural convection

Tpl

T

+Tp

pl

2 <10% — (RiRe) <152

Forced convection

»>I"d criterion: comparison of gravitational and viscous forces

c) Viscous a’ (RiRe),”
forces PP=== - 2 -
. A - —— c® (RiRe),” +27648
- dU
0 ﬂﬁ‘%}‘%—p“’d : RiRe), - 16628P
X e = [ 5
Yo, y J1-p?

Natural convection

P>0095 — (RiRe) = 5059

Forced convection

P<0,05 — (RiRe) <83
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Criteres de sélection pour distinguer les régimes de convection — Température uniforme imposée

>|II'd criterion : comparison of gravitational forces and pressure forces

gl a’ _\/(RiRe)ez
_a _ [RRE:

Y ., b 27648
OZGﬂ( -%j—%?ﬁ( +Vj; (RiRe) , =166,28I
NATURAL CONVECTION FORCED CONVECTION
> 0,95 — (RiRe) > 33256 <005 — (RiRe) <83

>V criterion : comparison of the total gravitational and kinetic energies

RiRe
Ke = ( )e_ — (RiRe), _ 1EENy
/580608+(RiRe )’ J1-K?
NATURAL CONVECTION FORCED CONVECTION
K. > 0,95 —(RIRe) = 231¢ K.<0,05 — (RIRe) <382
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Criteres de sélection pour distinguer les régimes de convection — Température uniforme imposée

(RIRe). number corresponding to each criterion for
uniform imposed temperature

d First Second Third Fourth
Transition au y 48 4
criterion criterion criterion criterion
Mixed / natural convection 5472 505, 9 3 325,6 2 318
Mixed / forced convection 15,2 8,3 8,3 38,2
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Selection criteria for distinguishing different convection regimes

Flux density uniformly imposed

>1I"d criterion: comparison of gravitational and viscous forces

a2 106.107(892786+(RiR9 ) . .2 4B
p2_2 _ = "~ e ) (RjRe Ri Re). =34058+85126+/16—P
= (299935+(RiR9 . )’ (RIRS. (RIRe) 2
NATURAL CONVECTION FORCED CONVECTION
P> 0,95 —(RiRe) > 10261 P<0,05 — (RiRe) <532

>lI"d criterion : comparison of gravitational forces and pressure forces

2
B a:2 =170.10™(Ri Re)"(1,2.10°3(Ri Re) +0082)*(892786 +(Ri Re) )’
C
NATURAL CONVECTION FORCED CONVECTION

'>0,95 —(RiRe) > 8736 r<0,05 — (RiRe} <519
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Selection criteria for distinguishing different convection regimes — Flux density uniformly imposed

Thermal pressure coefficient corresponding to different selection criteria in case 14

100000,0 +

Coefficient de pousée thermique

for oil velocity at the entrance of 1,2 m.s*?

Natural

10000,.05- vection
/ —< (RiRe)*(cas14)
=~ 1l m/n
/ —-— || m/f
1000,0 | oK oK oK oK oK oK X —2— Il m/n
—— 1l m/f
100,0 | 7\/ %
C 7\ 7\ 7\ 7\ 7\ 7\ 7\ o
Forced convection
5mm 5mm 11 mm 18 mm 27 mm 7 mm 5mm 5mm 30 mm
10,0 ‘ ‘ ‘
1 2a 2b 3 4a 4b 5 6 4
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Conclusions

Using an obstacle to direct the oil from entering the transformer
helps to cool its active parts at lower cost

The comparison of numerical and experimental results shows good
agreement with lower spreads 10%

The hypothesis of a flux density imposed on surfaces that were
justified in the steady state is no longer valid in the transient state

The semi-analytical analysis of the optimal spacing showed that the
heat transfer is more effective within narrow channels

The heat transfer inside narrow channels is realized by mixed
convection while in the wider channels by natural convection
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