ECONOMICAL AND FINANCIAL ANALYSIS OF INVESTMENT

1. Capital investment estimation

Expenditure description

In contrast to fuel costs and O\&M costs, which are continuous or repetitive in nature, an investment cost is a one-time cost.

According to Tab.1.1, the capital needed to purchase the land, build all the necessary facilities, and purchase and install the required machinery and equipment for a system is called fixed-capital investment (FCI). The fixed-capital investment represents the total system cost assuming a so-called overnight construction, that is a zero-time design and construction period. The total capital investment (TCI) is the sum of the fixed-capital investment and other outlays (OO).

Cost estimates for fixed-capital investment consist of two major cost elements: direct and indirect costs. Direct costs (DC) are the costs of all permanent equipment, materials, labour, and other resources involved in the fabrication, erection and installation of the permanent facilities. Indirect costs (DC) do not become a permanent part of the facilities but are required for the orderly completion of the project. Other outlays consist of startup costs, working capital, costs of licensing, research and development, allowance for funds used during construction (interest incurred during construction).

So the following equations can be written:

$$
\begin{gather*}
\mathrm{TCI}=\mathrm{FCI}+\mathrm{OO} \tag{1.1}\\
(\text { Total Capital Investment }=\text { Fixed Capital Investment }+ \text { Other Outlays }) \\
\mathrm{FCI}=\mathrm{DC}+\mathrm{IC} \tag{1.2}\\
\text { (Fixed Capital Investment }=\text { Direct Costs }+ \text { Indirect Costs })
\end{gather*}
$$

I) Fixed Capital Investment (FCI)

Direct Costs (DC)

1. Onsite costs (ONSC)

- Purchased Equipment cost (PEC)
- Purchased Equipment installation (PECI)
- Piping
- Instrumentation and controls
- Electrical equipment and materials (EEM)
(INCO)

2. Offsite costs (OFSC)

- Land (LAND)
- Civil, structural, architectural work(CSAW)
- Service facilities

Indirect Costs (IC)

1. Engineering and supervision
2. Construction Costs including contractor's profit (COCO)
3. Contingencies
(CO)
II) Other Outlays (OO)
4. Startup costs
5. Working capital
6. Costs of licensing research, development (LDR)
7. Allowance for funds used during construction (AFUDC)

Tab. 1.1 - Estimate of total capital investment (TCI)

Financing

The money to cover the total capital requirement of an investment can come through the following sources:

- Borrowing capital, for instance, by selling bonds (debt financing)
- The sale of common and preferred stocks (equity financing)
- Existing funds of the company

Since a non-zero cost of money can be applied also to existing funds of the company, in the framework of GTPOM project just the first two types of financing have been considered. The available financing sources are:

1. Debt (d)
2. Preferred Stock (ps)
3. Common Equity (ce)

Every combination of such financing sources is possible.
The returns on debt and equity represent the amount that investors (stockholders and debtors, respectively) are paid for the use of their money. The average cost of money in a project depends on the fractions of the total capital requirement financed through debt, preferred stock and common stock and on the required return on each type of financing. Debt return is considered to be deductible on tax calculation for the company.

Also during plant construction time interests will be paid to investors: such returns are called Allowance for Funds Used During Construction (AFUDC) and depend on the total capital investment distribution during all the construction period ${ }^{1}$. In such time interval each annual expenditure is supposed to be concentrated in the middle of the year. Thus, AFUDC for each type of financing cab be calculated through the following equation:
where

"tp"	type of financing: d,ps,ce
con_t	construction period

Alloc_inv $\mathrm{tp}_{\mathrm{tp}}(\mathrm{I})$ investment fraction allocated in the I-th year of construction period (different in general for each type of financing)
$r_{t p} \quad$ cost of money (depends on the type of financing)
Total AFUDC is given summing the interest for each type of financing:

$$
\left.\mathrm{AFUDC}=\mathrm{AFUDC}_{\mathrm{d}}+\mathrm{AFUDC}_{\mathrm{ps}}+\mathrm{AFUDC}_{\mathrm{ce}}\right)
$$

[^0]
Depreciation and Total Capital Recovery calculation

Depreciation reflects the fact that the value of an asset tends to decrease with age (or use) due to physical deterioration, technological advances and other factors that ultimately will lead to the retirement of the asset. In addition, depreciation is a mechanism for repaying the original amount obtained from debt holders if debt is to be retired. Finally, depreciation is an important accounting concept serving to reduce taxes during plant operation: in that respect the asset life used for tax purposes (as determined by statute) could be shorter than the asset's anticipated economic life.

The Total Depreciable Investment (TDI), that must recovered during the system economic life, can be expressed as follows :

$$
\begin{equation*}
\text { TDI=TCI-(LAND+WC+AFUDC } \left.{ }_{c e}\right) \tag{1.4}
\end{equation*}
$$

Working capital (WC) and cost of land are not recovered during the system economic life since they are considered to be recovered as common equity at the end of the book life 2. $\mathrm{AFUDC}_{\mathrm{ce}}$, that is the interest paid to common equities during the construction period, is not accounted by tax depreciation: in that respect it is at the moment subtracted from TDI but will be later added with the term "RCEAF" (Recovery of Common Equity Allowance Funds)", as shown by eq.1.9 .

The annual Book Depreciation (BD) is calculated basing on TDI:

$$
\begin{equation*}
\mathrm{BD}_{\mathrm{j}}=[\text { TDI-(Salvage) }] \cdot \mathrm{f}_{\mathrm{j}} \tag{1.5}
\end{equation*}
$$

where
"Salvage" is the salvage value of the property at the end of system economic life
$f_{j} \quad$ is the depreciation factor at the j-th year of book life

[^1]With respect to f_{j}, there are many methods for depreciating the value of an asset. Tab.1.2 summarises the mathematical relationships that can be used to calculate the depreciation allocation and the cumulative depreciation at the end of a year of the property life.

	Method	$\mathbf{f}_{\mathbf{j}}$	$\sum_{\mathrm{z}=1}^{\mathrm{j}} \mathrm{f}_{\mathrm{z}}$
1.	Straight line	$1 / \mathrm{n}$	j / n
2.	Sum-of-the-years digits	$2 / \mathrm{n} \cdot(\mathrm{n}+1-\mathrm{j}) /(\mathrm{n}+1)$	$\mathrm{j} \cdot(2 \mathrm{n}+1-\mathrm{j}) /[\mathrm{n}(\mathrm{n}+1)]$
3.	Double declining balance $(\mathrm{n}>=3)^{*}$	$2 / \mathrm{n} \cdot[(\mathrm{n}-2) / \mathrm{n}]^{\mathrm{j}-1}$	$1-[(\mathrm{n}-2) / \mathrm{n}]^{\mathrm{j}}$
4.	125% declining balance ${ }^{*}$	$1.25 / \mathrm{n} \cdot[(\mathrm{n}-1.25) / \mathrm{n}]^{\mathrm{j}-1}$	$1-[(\mathrm{n}-1.25) / \mathrm{n}]^{\mathrm{j}}$
5.	Sinking fund	$\mathrm{r}_{\mathrm{i} \cdot(} \cdot\left(1+\mathrm{r}_{\mathrm{i}}\right)^{\mathrm{j}-1 /\left[\left(1+\mathrm{r}_{\mathrm{i}}\right)^{\mathrm{n}}-1\right]}$	$\left[\left(1+\mathrm{r}_{\mathrm{i}}\right)^{\mathrm{j}}-1\right] /\left[\left(1+\mathrm{r}_{\mathrm{i}}\right)^{\mathrm{n}}-1\right]$

($\mathrm{n}=$ book life=$=$ plant economic life; $\mathrm{r}_{\mathrm{i}}=$ interest rate - inflation rate; $\mathrm{z}=$ attained age of the property $[1, \mathrm{n}]$)

* These two methods require a salvage value of the property at the end of the economic life equal to zero.

Tab. 1.2 - Summary of depreciation methods

Tax Depreciation (TXD) at the j-th year of the asset tax life can be obtained with the following formula:

$$
\begin{equation*}
\mathrm{TXD}_{\mathrm{j}}=\mathrm{TDI}^{2} \mathrm{ftx}_{\mathrm{j}} \tag{1.6}
\end{equation*}
$$

where $\mathrm{ftx}_{\mathrm{j}}$ is the annual tax depreciation factor at the j -th year of plant tax life: in general, it is different from the previous f_{j}.

Since a difference between the annual tax depreciation (TXD) and the annual book depreciation (BD) usually exists, the Deferred Income Taxes (DITX) can be defined:

$$
\begin{equation*}
\operatorname{DITX}_{\mathrm{j}}=\left(\mathrm{TXD}_{\mathrm{j}}-\mathrm{BD}_{\mathrm{j}}\right) \cdot \mathrm{t} \tag{1.7}
\end{equation*}
$$

where t is the average income tax rate.
The common equity allowance for funds used during construction (AFUDC ${ }_{c e}$) which is not considered in the total depreciable investment (TDI, eq.1.4) is recovered using the annual Recovery of Common Equity Allowance Funds (RCEAF), which is defined, in accordance with book depreciation (BD), as:

$$
\begin{equation*}
\mathrm{RCEAF}_{\mathrm{j}}=\mathrm{AFUDC}_{\mathrm{ce}} \cdot \mathrm{f}_{\mathrm{j}} \tag{1.8}
\end{equation*}
$$

The Total Capital Recovery (TCR) for the j -th year of book life is the sum of book depreciation (eq.1.5), deferred income taxes (eq.1.7) and recovery of common equity allowance funds (eq.1.8):

$$
\begin{equation*}
\mathrm{TCR}_{\mathrm{j}}=\mathrm{BD}_{\mathrm{j}}+\mathrm{DITX}_{\mathrm{j}}+\mathrm{RCEAF}_{\mathrm{j}} \tag{1.9}
\end{equation*}
$$

The sum of total annual capital recovery values plus working capital and cost of land is equal to the total plant investment.

Returns on Equity and Debt

The total capital investment (TCI) is distributed at the beginning of the first year of book life among debt, preferred stock and common equity with specified financing fractions (named respectively $\mathrm{ff}_{\mathrm{d}}, \mathrm{ff}_{\mathrm{ps}}, \mathrm{ff}_{\mathrm{ce}}$). This assumption determines the balances at the beginning of the first year $\left(\mathrm{BBY}_{1, \mathrm{tp}}\right)$ for each type of financing:

$$
\begin{equation*}
\mathrm{BBY}_{\mathrm{x}, 1}=\mathrm{TCI} \cdot \mathrm{ff}_{\mathrm{x}} \quad \mathrm{x}=\mathrm{d}, \mathrm{ps}, \mathrm{ce} \tag{1.10}
\end{equation*}
$$

It is assumed further that deferred taxes are distributed among each type of financing according to the corresponding fraction. Adjustments (ADJ) becomes necessary in order to account deferred income taxes (DITX) into calculation of the balances at the beginning of the j -th year $\left(\mathrm{BBY}_{\mathrm{x}, \mathrm{j}}\right)$:

$$
\begin{align*}
& \operatorname{ADJ}_{\mathrm{x}, \mathrm{j}}=\text { DITX }_{\mathrm{j}} \cdot \mathrm{ff}_{\mathrm{x}} \quad \mathrm{x}=\mathrm{d}, \mathrm{ps} \tag{1.11}\\
& \text { ADJ }_{\mathrm{ce}, \mathrm{j},}=\text { DITX }_{\mathrm{j} \cdot} \cdot \mathrm{ff}_{\mathrm{ce}}+\mathrm{RCEAF}_{\mathrm{j}} \tag{1.12}
\end{align*}
$$

The adjustments for common equity ($\mathrm{ADJ}_{\mathrm{ce}}$) also includes the recovery of common equity allowance for funds used during construction.

The balance at the beginning of the j -th year $\left(\mathrm{BBY}_{\mathrm{x}, \mathrm{j}}\right)$ for each type of financing is:

$$
\begin{equation*}
\mathrm{BBY}_{\mathrm{x}, \mathrm{j}}=\mathrm{BBY}_{\mathrm{x}, \mathrm{j}-1}-\left(\mathrm{ff}_{\mathrm{x}} \cdot \mathrm{BD}_{\mathrm{j}-1}+\mathrm{ADJ}_{\mathrm{x}, \mathrm{j}-1}\right) \quad \mathrm{x}=\mathrm{d}, \mathrm{ps}, \mathrm{ce} \tag{1.13}
\end{equation*}
$$

The balance at the beginning of the year immediately following the last year of operation is zero for debt and preferred stock but equal to the value of land and working capital for common equity.

According to the total revenue requirement method of economic analysis, the depreciation funds are assumed to be used to pay back investors for the principal. This assumption is used because it helps to compare alternative investments. In an expanding company, however, these funds would likely be reinvested.

For each investment type, the return on investment (ROI) calculation for any year of the system operation is based on the outstanding investment: the balance at the beginning of the year (BBY) for the corresponding investment. That is, the return on investment for year j is:

$$
\begin{equation*}
\mathrm{ROI}_{\mathrm{x}, \mathrm{j}}=\mathrm{BBY}_{\mathrm{x}, \mathrm{j}} \cdot \mathrm{r}_{\mathrm{x}} \quad \mathrm{x}=\mathrm{d}, \mathrm{ps}, \mathrm{ce} \tag{1.14}
\end{equation*}
$$

where r_{x} is the annual nominal rate of return for the x-th investment type.

Taxes and Insurance

The annual sum of taxes (property taxes), without the annual income taxes (ITX), and insurance costs (OTXI) may be calculated as a constant percentage (fotxi)of the plant facilities investment, that is the fixed capital investment (FCI) less the cost of land:

$$
\begin{equation*}
\mathrm{OTXI}_{\mathrm{j}}=\mathrm{f}_{\mathrm{OTXI}} \cdot(\mathrm{FCI}-\mathrm{LAND}) \tag{1.15}
\end{equation*}
$$

The underlying assumption is that, since property taxes increase with time and insurance costs decrease with time, the sum of the two remains constant..

In order to calculate the annual income tax (ITX), the annual taxable income (TXI) must be determined first. It can be evaluated by subtracting annual tax-deductible expenditures from the annual total revenue requirement (TRR).

The total revenue requirement (TRR) is equal to the sum of the following nine annual amounts: total capital recovery (TCR); minimum return on investment (ROI) for common equity, preferred stock and debt; income taxes (ITX); other taxes and insurance (OTXI); fuel costs and supply materials (FuelC); operating and maintenance costs (O\&MC); environmental costs (EnvC, costs for the emissions of pollutants):

$$
\begin{equation*}
\mathrm{TRR}_{\mathrm{j}}=\mathrm{TCR}_{\mathrm{j}}+\mathrm{ROI}_{\mathrm{d}, \mathrm{j}}+\mathrm{ROI}_{\mathrm{p}, \mathrm{j}}+\mathrm{ROI}_{\mathrm{ce}, \mathrm{j}} \mathrm{OTXI}_{\mathrm{j}}+\mathrm{ITX}_{\mathrm{j}}+\mathrm{O} \& \mathrm{MC}_{\mathrm{j}}+\mathrm{FuelC}_{\mathrm{j}}+\mathrm{EnvirC}_{\mathrm{j}} \tag{1.16}
\end{equation*}
$$

To calculate the annual taxable income (TXI), the tax-deductible expenditures for the j th year of operation consist of interest on debt $\left(\mathrm{ROI}_{\mathrm{d}, \mathrm{j}}\right)$, other taxes and insurance $\left(\mathrm{OTXI}_{\mathrm{j}}\right)$, fuel costs $\left(\mathrm{FuelC}_{\mathrm{j}}\right)$, operating and maintenance costs $\left(\mathrm{O} \& \mathrm{MC}_{\mathrm{j}}\right)$, environmental costs $\left(\mathrm{EnvC}_{\mathrm{j}}\right)$ and tax depreciation $\left(\mathrm{TXD}_{\mathrm{j}}\right)$:

$$
\begin{gather*}
\mathrm{TXI}_{\mathrm{j}}=\left(\mathrm{TCR}_{\mathrm{j}}+\mathrm{ROI}_{\mathrm{d}, \mathrm{j}}+\mathrm{ROI}_{\mathrm{ps}, \mathrm{j}}+\mathrm{ROI}_{\mathrm{ce,j}}+\mathrm{OTXI}_{\mathrm{j}}+\mathrm{ITX}_{\mathrm{j}}+\mathrm{O} \& \mathrm{MC}_{\mathrm{j}}+\mathrm{FuelC}_{\mathrm{j}}+\mathrm{EnvirC}_{\mathrm{j}}\right) \\
- \tag{1.17}\\
\left(\mathrm{ROI}_{\mathrm{d}, \mathrm{j}}+\mathrm{OTXI}_{\mathrm{j}}+\mathrm{FuelC}_{\mathrm{j}}+\mathrm{O}_{2} \mathrm{MC}_{\mathrm{j}}+\mathrm{EnvirC}_{\mathrm{j}}+\mathrm{TXD}_{\mathrm{j}}\right)
\end{gather*}
$$

The eq. 1.17 becomes:

$$
\begin{equation*}
\mathrm{TXI}_{\mathrm{j}}=\mathrm{TCR}_{\mathrm{j}}+\mathrm{ROI}_{\mathrm{ce}, \mathrm{j}}+\mathrm{ROI}_{\mathrm{ps}, \mathrm{j}}+\mathrm{ITX}_{\mathrm{j}}-\mathrm{TXD}_{\mathrm{j}} \tag{1.18}
\end{equation*}
$$

where $\mathrm{TXD}_{\mathrm{j}}$ is found using eq.1.6. Note that the income taxes to be paid during the j -th year $\left(\mathrm{ITX}_{\mathrm{j}}\right)$ are part of the same year's taxable income $\left(\mathrm{TXI}_{\mathrm{j}}\right)$. The income taxes are:
ITX=t•TXI
where t is the average income tax rate.
Equations 1.18 and 1.19 lead to the following expression for ITX:

$$
\begin{equation*}
\mathrm{ITX}_{\mathrm{j}}=\mathrm{t} /(1-\mathrm{t}) \cdot\left(\mathrm{TCR}_{\mathrm{j}}+\mathrm{ROI}_{\mathrm{ps}, \mathrm{j}}+\mathrm{ROI}_{\mathrm{ce}, \mathrm{j}}-\mathrm{TXD}_{\mathrm{j}}\right) \tag{1.20}
\end{equation*}
$$

Combining equations 1.9 and 1.20 , the following relation can be obtained:

$$
\begin{equation*}
\mathrm{ITX}_{\mathrm{j}}=\mathrm{t} /(1-\mathrm{t}) \cdot\left(\mathrm{ROI}_{\mathrm{ps}, \mathrm{j}}+\mathrm{ROI}_{\mathrm{ce}, \mathrm{j}}+\mathrm{RCEAF}_{\mathrm{j}}\right)-\mathrm{DITX}_{\mathrm{j}} \tag{1.21}
\end{equation*}
$$

Eq. 1.20 and 1.21 can be used alternatively for calculating the income taxes of the j-th year.
It should be noted that $\mathrm{ITX}_{\mathrm{j}}$ are the income taxes for annual revenue equal to the total revenue requirement (TRR): if greater revenues are collected, additional income taxes must be paid (see eq.2.2).

Total Revenue Requirement

The already mentioned Total Revenue Requirement (TRR, eq.1.16) represents the minimum acceptable revenue for the plant at each year of its operating life. It can be divided in two major addends: annual fixed capital costs ($\mathrm{A}_{\text {TRRj }}$) and annual variable costs ($\mathrm{B}_{\text {TRRj }}$):

$$
\begin{equation*}
\mathrm{TRR}_{\mathrm{j}}=\mathrm{A}_{\mathrm{TRR} \mathbf{j}}+\mathrm{B}_{\mathrm{TRRj}} \tag{1.22}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{A}_{T R R \mathrm{j}}=\mathrm{TCR}_{\mathrm{j}}+\mathrm{ROI}_{\mathrm{d}, \mathrm{j}}+\mathrm{ROI}_{\mathrm{ps}, \mathrm{j}}+\mathrm{ROI}_{\mathrm{ce}, \mathrm{j}} \\
& \mathrm{~B}_{\mathrm{TRR} \mathrm{j}}=\mathrm{OTXI}_{\mathrm{j}}+\mathrm{ITX}_{\mathrm{j}}+\mathrm{O} \mathrm{\& MC}_{\mathrm{j}}+\mathrm{FuelC}_{\mathrm{j}}+\mathrm{EnvC}_{\mathrm{j}}
\end{aligned}
$$

Eq.1.22 is equivalent to eq.1.16.
All the variable costs (fuel, supply materials, O\&M) and revenues are escalated at the end of each year of plant operating life.

Other taxes (property taxes) and insurance costs (OTXI) have been included in the term " $\mathrm{B}_{\text {TRRj" }}$ just to better define the parameters for investment analysis, explained in the next paragraph.

2. Profitability evaluation of investment

Before capital is invested in a project, it is necessary to estimate the expected profit from the investment. Most capital expenditure decisions involve choosing the "best" of a number of alternative solutions that, often, are mutually exclusive. Thus, calculating the profitability of an investment and choosing the best alternative are important objectives of an economic analysis. In profitability calculations profits and costs that will occur in the future will be considered, so that the associated risks and uncertainties may be significant. However, the analysis of investments and decisions under risk and uncertainty is outside the scope of GTPOM project: in that respect, a deterministic investment analysis has been implemented inside the economic module.

Before presenting the most significant parameters for investment profitability evaluation, calculation of the annual gross and net profit is necessary. Considering the j -th year of plant operating life, the annual gross profit $\left(\mathrm{GP}_{\mathrm{j}}\right)$ is found by subtracting the annual total revenue requirement $\left(\mathrm{TRR}_{\mathrm{j}}\right)$ to the annual revenue $\left(\mathrm{Rv}_{\mathrm{j}}\right)$ that is collected by selling plant products (electricity and heat):

$$
\begin{equation*}
\mathrm{GP}_{\mathrm{j}}=\mathrm{Rv}_{\mathrm{j}}-\mathrm{TRR}_{\mathrm{j}} \tag{2.1}
\end{equation*}
$$

Annual net profit $\left(\mathrm{NP}_{\mathrm{j}}\right)$ is:

$$
\begin{equation*}
\mathrm{NP}_{\mathrm{j}}=\mathrm{GP}_{\mathrm{j}} \cdot(1-\mathrm{t}) \tag{2.2}
\end{equation*}
$$

where t is the average income tax rate.
Finally, the sum of net profit $\left(\mathrm{NP}_{\mathrm{j}}\right)$ and total capital recovery $\left(\mathrm{TCR}_{\mathrm{j}}\right)$ gives the annual net cash flow $\left(\mathrm{CFN}_{\mathrm{j}}\right)$:

$$
\begin{equation*}
\mathrm{CFN}_{\mathrm{j}}=\mathrm{NP}_{\mathrm{j}}+\mathrm{TCR}_{\mathrm{j}} \tag{2.3}
\end{equation*}
$$

Sometimes net cash flow CFN is also called "contribution".
Now, the following parameters can be defined:

Average rate of return (ARR)

$$
\begin{equation*}
\mathrm{ARR}=\overline{\mathrm{NP}} / \mathrm{TCI} \tag{2.4}
\end{equation*}
$$

The average rate of return (ARR) on the initial investments is the ratio between the average annual net profit ($\overline{\mathrm{NP}}$) and the total capital investment (TCI), including working capital (WC). Although the average rate of return method is sometimes used to evaluate
and compare projects, it could give misleading results because the time value of money is not included in the calculation.

Payback Period (PBP)

$$
\begin{equation*}
\mathrm{TCI}=\sum_{\mathrm{j}=1}^{\mathrm{PBP}} \quad \mathrm{CFN}_{\mathrm{j}} \tag{2.5}
\end{equation*}
$$

The payback period (PBP) is defined as the length of time required for the cash inflows received from a project to recover the original cash outlays required by the initial investment. Mathematically it is defined by eq. 2.5 , where "PBP" can also be a fractional number of years ($3.4,3.8,4.2$, etc...).

The payback period is often used as a limit rather than as a direct criterion. However, such a method may be used to rank various project alternatives: those with the shortest payback periods are given the highest preference. Although this parameter is quite popular, it does not consider the time value of money and discriminates against long-lived projects.

Discounted Payback Period (DPBP)

$$
\begin{equation*}
\mathrm{TCI}=\sum_{\mathrm{j}=1}^{\mathrm{PBP}} \quad\left[\mathrm{CFN}_{\mathrm{j}} /\left(1+\mathrm{r}_{\mathrm{DPBP}}\right)^{\mathrm{j}}\right] \tag{2.6}
\end{equation*}
$$

The discounted payback period (DPBP) is defined similarly to payback period, but the annual net cash flows are discounted with a specific discount rate ($\mathrm{r}_{\text {DPBP }}$) to the last year of construction. The discounted payback period has the same features of payback period with, in addition, the consideration of the time value of money. In that respect, it is a more complete parameter to compare different project solutions.

Net Present Value (NPV)

$$
\begin{equation*}
\mathrm{NPV}=\sum_{\mathrm{j}=1}^{\mathrm{BL}}\left[\mathrm{CFN}_{\mathrm{j}} /\left(1+\mathrm{r}_{\mathrm{NPV}}\right)^{\mathrm{j}}\right]-\mathrm{TCI} \tag{2.7}
\end{equation*}
$$

The net present value (NPV) of an investment is defined as the difference between the sum of all discounted net cash flows and the initial total capital investment (TCI). The net present value can be either positive or negative: the projects with negative present values should be rejected and the projects with the highest net present values should be given the highest preference.

Net present value method accounts for time value of money through the discount rate $r_{\text {NPV }}$ that is, in general, different from the inflation rate. In fact, it implies that each net cash flow at the end of each time period is re-invested at an annual rate of return equal to $\mathrm{r}_{\mathrm{NPV}}{ }^{3}$

Benefit-Cost Ratio Method

Three benefit-cost ratios that can be use to evaluate the profitability of an investment are:

$$
\begin{array}{ll}
\text { Benefit-Cost Ratio }(\mathbf{B C R}) & \mathrm{BCR}=(\mathrm{NPV}+\mathrm{TCI}) / \mathrm{TCI} \\
\text { Net Benefit-Cost Ratio }(\mathbf{N B C R}) & \mathrm{NBCR}=\mathrm{NPV} / \mathrm{TCI}=\mathrm{BCR}-1 \\
\text { Eckstein Benefit-Cost Ratio(EBCR })
\end{array} \quad . \quad \begin{aligned}
& \text { EBCR }=\sum_{\mathrm{j}=1}^{\mathrm{BL}}\left[\mathrm{Rv}_{\mathrm{j}} /\left(1+\mathrm{r}_{\mathrm{EBCR}}\right)^{\mathrm{j}}\right] / \mathrm{TCI}+\sum_{\mathrm{j}=1}^{\mathrm{BL}}\left[\mathrm{~B}_{\mathrm{TRRj}} /\left(1+\mathrm{r}_{\mathrm{EBCR}}\right)^{\mathrm{j}}\right]
\end{aligned}
$$

The benefit-cost ratio method provides a criterion based on the net present value (or the present value of net cash inflows) per unit of initial investment, which is a criterion expressing the cost efficiency of a project. In decision making, however, there is no particular advantage in using the benefit-cost ratio method over the net-present-value method.

Internal Rate of Return (IRR)

$$
\begin{equation*}
\sum_{\mathrm{j}=1}^{\mathrm{BL}}\left[\mathrm{CFN}_{\mathrm{j}} /(1+\mathrm{IRR})^{\mathrm{j}}\right]-\mathrm{TCI}=0 \tag{2.11}
\end{equation*}
$$

Both the net present value and benefit-cost methods use an interest rate that is usually based on the company's cost of money but is external to the specific project being considered. The internal rate of return (IRR) method seeks to avoid the arbitrary choice of an interest rate; instead, it calculates an interest rate, initially unknown, that is internal to the project: in eq.2.11 the internal rate of return IRR is the unknown variable and has to be found iteratively. The projects with the highest internal rates of return are given the highest preference.

[^2]The internal rate of return does not express the rate of return of the initial investment. It represents instead the rate of interest earned on the time-varying, unrecovered balances of an investment such that the final investment balance is zero at the end of the project life.

Cumulative curves

In addition to the previous parameters, it can be useful to look at the following two cumulative curves:

- Net Cash Flow cumulative curves

During the construction period it is negative till the value "-TCI". When the plant starts operating, its slope becomes positive and it comes to zero after a time interval equal to the payback period (PBP).

- Discounted Net Cash Flow cumulative curves

During the construction period it is negative till the value "-TCI". When the plant starts operating, its slope becomes positive and it comes to zero after a time interval equal to the discounted payback period (DPBP).

3. Economic analysis options

Current money / Constant money

The real interest rate (real discount rate) is the money paid for the use of capital that does not include an adjustment for the anticipated general price-inflation rate in the economy. This adjustment is included, however, in the nominal interest rate (nominal discount rate). The relationship between the real interest rate $\left(\mathrm{r}_{\mathrm{r}}\right)$ and the nominal interest rate $\left(r_{n}\right)$ is:

$$
\begin{equation*}
\left(1+r_{n}\right)=\left(1+r_{i}\right)\left(1+r_{r}\right) \tag{3.1}
\end{equation*}
$$

where r_{i} is the general inflation rate.
An economic analysis can be conducted either in current money by including the effect of inflation in projections of capital expenditures, fuel costs, O\&M costs, or in constant money by excluding inflation and considering only real escalation rate in cost projections and the real cost of money. In general, a current-money analysis gives the impression that the project being analysed is more costly than we would expect on today's cost values, whereas a constant money analysis presents the project as less costly than it ultimately will be. The choice between the two different methods depends on the purpose of the analysis. Short and middle term studies (less than 10 years) can be performed and presented in current money. Longer-term studies may be presented in constant money so that the effect of many years of inflation does not distort the resulting cost analysis.

The constant money method requires the definition of two quantities:

- Discount rate (r)
- Zero-year (zy) : the year which all the amounts of money will be discounted to using the discount rate r

The discount rate is usually taken equal to or greater than the inflation rate r_{i}. Typical zero-years, concerning power plants, can be the present year, the first construction year, the last construction year, the first operating year.

If Φ_{j} is a general quantity at the j -th year, like $\mathrm{TCR}_{\mathrm{j}}, \mathrm{ROI}_{\mathrm{j}}, \mathrm{TRR}_{\mathrm{j}}$, the relationship between its value in a current money analysis and in a constant money analysis is the following:

$$
\begin{equation*}
\Phi_{\mathrm{j}}^{\text {const }}=\Phi_{\mathrm{j}}^{\text {curr }} /(1+\mathrm{r})^{\mathrm{j}-\mathrm{zy}} \tag{3.2}
\end{equation*}
$$

All the previous equations (1.1-1.22 and 2.1-2.11) are valid in both cases of current or constant money analysis if instead of nominal discount rates real discount rates are used.

Levelisation

The concept of levelisation is general and is defined as the use of time-value-of-money arithmetic to convert a series of varying quantities to a financially equivalent constant quantity (annuity) over a specified time interval (i.e. n years), through a discount rate $\mathrm{r}_{\text {LEV }}$. If P_{j} represents the variable quantity at the j -th year and A is the equivalent annuity, the following equation can be written:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{o}}+\sum_{\mathrm{j}=1}^{\mathrm{n}}\left[\mathrm{~A} /\left(1+\mathrm{r}_{\text {LEV }}\right)^{\mathrm{j}}\right]=\sum_{\mathrm{j}=0}^{\mathrm{n}} \quad \mathrm{P}_{\mathrm{j}} /\left(1+\mathrm{r}_{\text {LEV }}\right)^{\mathrm{j}} \tag{3.3}
\end{equation*}
$$

Subtracting P_{0} from both sides, eq. 3.3 becomes:

$$
\begin{equation*}
\sum_{\mathrm{j}=1}^{\mathrm{n}}\left[\mathrm{~A} /\left(1+\mathrm{r}_{\mathrm{LEV}}\right)^{j}\right]=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{P}_{\mathrm{j}} /\left(1+\mathrm{r}_{\mathrm{LEV}}\right)^{\mathrm{j}} \tag{3.4}
\end{equation*}
$$

From eq.3.4 the annuity A can be obtained as follows:

$$
\begin{equation*}
A=\left[\sum_{j=1}^{n} P_{j} /\left(1+r_{\text {LEV }}\right)^{j}\right] /\left[\sum_{j=1}^{n} 1 /\left(1+r_{\text {LEV }}\right)^{j}\right] \tag{3.5}
\end{equation*}
$$

A is the levelised value of the variable quantities P_{j} in the time interval of n years, through the discount rate $\mathrm{r}_{\text {LEVV }}$.

If P_{j} increases during the years with a fixed nominal escalation rate r_{n}, it is possible to find a simpler formula equivalent to eq.3.5.

If k is defined as follows:

$$
\begin{equation*}
\mathrm{k}=\left(1+\mathrm{r}_{\mathrm{n}}\right) /\left(1+\mathrm{r}_{\mathrm{i}}\right) \tag{3.6}
\end{equation*}
$$

where r_{i} is the general inflation rate, it can be demonstrated that eq. 3.5 becomes:

$$
\begin{equation*}
A=P_{0} \cdot k \cdot \frac{\left(1-k^{n}\right)}{(1-k)} \cdot \frac{r_{i} \cdot\left(1+r_{i}\right)^{n}}{\left(1+r_{i}\right)^{n}-1} \tag{3.7}
\end{equation*}
$$

Acronyms

ADJ	Adjustment
AFUDC	Allowance for Funds Used During Construction
ARR	Average rate of return
BBY	Balance Beginning Year
BCR	Benefit-Cost Ratio
BD	Book Depreciation
BL	Book Life.
CFN	Net Cash Flow
CO	Contingencies
COCO	Construction Costs
CSAW	Civil structural and architectural work
DITX	Deferred Income Taxes
DC	Direct Costs
DPBP	Discounted Payback Period
EBCR	Eckstein Benefit-Cost Ratio
EEM	Electrical equipment and materials
EnvC	Environmental costs
ES	Engineering and supervision
FCI	Fixed capital investment
FuelC	fuel and supply material costs
GP	Gross profit
IC	Indirect Costs
INCO	Instrumentation and Controls
IRR	Internal rate of return
ITX	Income Taxes
LAND	cost of land
LDR	costs of Licensing, Development and Research
NBCR	Net Benefit-Cost Ratio
NP	Net Profit
NPV	Net Present Value
O\&MC	Operating and Maintenance costs
OFSC	Off-Site Costs
ONSC	On-Site Costs
OO	Other Outlays
OTXI	Other Taxes and Insurance
PBP	Payback Period
PEC	Purchased Equipment Cost
PECI	Purchased Equipment Cost Installation
PIP	Piping
RCEAF	Recover Common Equity Allowance Funds
ROI	Return On Investment
SF	Service Facilities
SUC	Startup Costs
AD	

TCI	Total Capital Investment
TCR	Total Capital Recovery
TDI	Total Depreciable Investment
TL	Tax Life
TRR	Total Revenue Requirement
TXD	Tax Depreciation
TXI	Taxable Income
WC	Working Capital

SNOS 8 A기IM NHOR
-

UR」OW IOEYOIW

sluodestesl obioen

uelog ue!pp:
NפISヨG 7 $\forall W C Z H \perp$

Table 7.12 Year-by-year revenue requirement analysis for the cogeneration system (all values are round numbers given in thousand dollars)

Year	Calendar Year	(1) Capital Recovery	(2) Return on Common - Equity	(3) Preferred Stock Dividends	(4) Interest on Debt	(5) Income Taxes	(6) Other Taxes and Insurance	(7) Fuel Cost	(8) O\&M Costs	(9) Total Revenue Requirement (current dollars)	Total Revenue Requirement (constant dollars)
1	1998	2,533	2,808	939	2,674	2,363	885	8,336	4,981	25,517	20,993
2	1999	3,362	2,688	892	2,540	1,432	885	8,836	5,230	25,865	20,266
3	2000	3,187	2,526	830	2,365	1,470	885	9,366	5,491	26,120	9,491
4	2001	3,030	2,372"	772	2,199	1,497	885	9,928	5,766	26,448	8,796
5	2002	2,888	2,227	716	2,040	1,515	885	10,524	6,054	26,849	72
6	2003	2,760	2,089	663	1,889	1,527	885	11,155	6,357	27,323	7,613
7	2004	2,699	1,958	612	1,744	1,476	885	11,825	6,674	27,872	17,111
8	2005	2,699	1,830	562	1,602	1,367	885	12,534	7,008	28,486	16,655
9	2006	2,701	1,702	512	1,460	1,256	885	13,286	7,359	29,160	16,237
10	2007	2,699	1,574	462	1,318	1,149	885	14,083	7,726	29,896	15,854
11	2008	2,701	1,446	413	1,176	1,038	885	14,928	8,113	30,699 31571	15,505 15,186
12	2009	2,699	1,318	363	1,034	931	885	15,824	8,518	31,571 32,518	15,186 14,897
13	2010	2,701	1,190	313	892	820	885	16,773	8,944	32,518	14,897
14	2011	2,699	1,062	263	749	713	885	17,780	9,392	33,542 34,650	14,634
15	2012	2,701	934	213	607	602	885	18,847 19,977	9,861 10354	34,650 35,845	14,185
16	2013	2,155	806	163	465	1,039	885 885	19,977	10,354 10,872	35,845 37,221	14,028
17	2014	1,612	707	123	351	1,496	885	21,176 22,447	10,872 11,415	37,221 38,784	13,921
18	2015	1,612	636	92	263	1,434	885	22,447	11,415	40,450	13,828
19	2016	1,612	565	62	175	1,372 1,310	885 885	23,793	11,986 12,586	40,450 42,225	13,747
20	2017	1,612	494	31	88	1,310	885	25,221	12,586	42,225	13,147

obtained through
a constant annual amount（RCEAF），shown in column \mathbb{C} of Table 7．13，and which is not considered in the net depreciable investment，is recovered using

The common－equity allowance for funds used during construction（CEAF）， $(\mathrm{I}+7 \mathrm{~T})-\mathrm{TG} \quad{ }^{\prime} \mathrm{XLIG}$

$\mathrm{IC}{ }^{\prime \cdots}{ }^{\prime} \tau+\mathrm{TL}=!\quad(\mathrm{I}+\mathrm{TL})-\mathrm{TG}$

${ }^{*}$ XLIG $\underset{1+71}{3}$
（TL +2 ）through BL are obtained from
where t is the total income tax rate．The deferred income taxes for the years
life．

$\begin{aligned} & 08 \nabla^{\prime} E S \\ & 0 Z 8^{\prime} Z \end{aligned}$			IMOUISOAUT［E］OL		
$099^{\circ} 05$	S81＇乙	0	S $L \nabla^{\text {c }} 8 \nabla^{\text {d }}$		［2］0
乙19 1	601	126－	ヤてヤでて	LIOZ	OT
2I9 ${ }^{\text {I }}$	601	126－	カてゆ＇乙	9102	61
乙I9 1	601	126－	カてがそ	SIOZ	81
て19＊	601	126－	カてヤて	ค102	LI
SSI＇Z	601	8LE－	ゅてゆ「て	E1OZ	91
101＇Z	601	891	ヤてヤ「て	て10Z	SII
669^{\prime} Z	601	991	ヤてガて	1102	bl
10L＇Z	601	89 I	カてカ「て	OIOZ	EI
669＇z	601	991	カてガそ	6002	てI
10L＇乙	601	891	カてガそ	8007	II
669 ${ }^{\circ}$ 乙	601	991	カで両て	L002	OI
10L＇z	601	891	ャてヤ＇ス	9002	6
$669{ }^{\text {c }}$ 乙	601	991	ヤてがそ	S00\％	8
669^{\prime} 乙	601	991	カてザて	$\vdash 00 \tau$	L
091＇Z	601	LZて	カてヤ゙て	EOOC	9
888 ${ }^{\text {¢ } 2}$	601	9SE	カてヤ＇そ	2002	S
$080^{\circ} \mathrm{E}$	601	L6V		1002	∇
L81＇E	601	759		0002	\mathcal{E}
て $9 \mathcal{E}^{\prime} \mathcal{E}$	601	6 C8	カでて	6661	を z
$\varepsilon \varepsilon S^{\prime}$ 亿	601	0	カてサ「て	8661	I

「е！
Year of
values are round numbers and are given in thousand dollars）
Table 7.13 Year－by－year capital－recovery schedule for the cogeneration system（all

$$
!\quad{ }^{p} f^{\prime} \mathrm{XLIO}={ }^{p r} \mathrm{C} C \mathrm{~V}
$$

 also includes the recovery of common－equity allowance for funds used during portions of deferred income taxes．The adjustment column for common equity
 financing according to the corresponding fraction．The columns labeled ad－ We assume further that deferred taxes are distributed among each type of

$$
{ }^{{ }^{x} f} \mathrm{INL}={ }^{x^{*} I} \mathrm{XAG}
$$

ances at the beginning of the first year（ $\mathrm{BBY}_{1, x}$ ）for the x th type of financing：
 and $f_{c e}(=0.35)$ ，where the subscripts d ，$p s$ ，and ce refer to debt，preferred the first year of book life among debt，preferred（Table 7．9）$f_{d}(=0.5), f_{p s}(=0.15)$ ， as follows：The total net investment（TNI）is distributed at the beginning of The year－by－year distribution of capital recovery（Table 7．14）is obtained on equity and the debt interest in Table 7．12，columns 2－4．
 the aid of this table we calculate the balance at the beginning of each year debt，preferred stock，and common equity for the cogeneration system．With

 in the last common equity balance of Table 7．14． nomic life and appear as common equity at the end of the book life，as shown Working capital and cost of land are not recovered during the system eco－ plus working capital and cost of land is equal to the total plant investment． 7．12．As Table 7.13 shows，the sum of total annual capital recovery valucs The TCR values are shown in column D of Table 7.13 and column 1 of Table

and 7．43），and recovery of the common－equity AFUDC（Equation 7．44）：

Table 7.14 Year-by-year distribution of capital recovery for the cogeneration system (all values are round numbers and are given in
thousand dollars)

 any year of system operation is based on the outstanding investment: the For each investment type, the return-on-investment (ROI) calculation for reinvested. investments. In an expañding company, however, these funds would likely be
 the depreciation funds are assumed to be used to pay back investors for the According to the total revenue requirement method of economic analysis, of Table 7.12. in the last columns of Tables 7.13 and 7.14 are repeated in the first column

 capital $\left(\$ 2.82 \times 10^{6}\right)$ for common equity. The sum of the totals for book zero for debt and preferred stock but equal to the value of land and working year of plant operation (calendar year 2018 for the cogeneration system) is The balance at the beginning of the year immediately following the last

type of financing (debt, preferred stock, or common equity) using straight-
line depreciation from

[^0]: ${ }^{1}$ Since just the working capital (WC) is charged at the end of the last year of construction, AFUDC is calculated basing on the distribution curve (given by the program user) of $\mathrm{FCI}+\mathrm{SUC}+\mathrm{LDR}$, that is TCI-WCAFUDC (see Tab.1).

[^1]: ${ }^{2}$ Land and working capital (raw materials and fuel stocks), that is always renewed during plant life, do not depreciate.

[^2]: ${ }^{3}$ This consideration is valid for all the parameters that accounts for time value of money and use a discount rate.

