

Master Degree in InnovativeTechnologies in Energy Efficient Buildings for Russian & Armenian Universities and Stakeholders

hermochemical **Power** (Group

Prof. Mario L. Ferrari

Thermochemical Power Group (TPG) - DIME – University of Genoa, Italy



Co-funded by the Erasmus+ Programme of the European Union



### **Boiler thermal balance**

### FITTING INTO THE CALCULATION SCHEME





slide 4

# **Calculation principles**

#### Objective: to calculate fuel and auxiliary energy consumption to fulfill the heat demand of the attached distribution subsystem(s)

#### **Basic input data:**

heat required by the attached distribution sub-system(s) Q<sub>H,dis,in</sub>

The calculation method takes into account

- heat losses (flue gas, envelope, etc.)
- auxiliary energy use and recovery
- other input data :
  - location of the heat generator(s) (heated room, unheated room, ..)
  - operating conditions (time schedule, water temperature, etc.)
  - control strategy (on/off, multistage, modulating, cascading, etc.)

#### **Basic outputs is delivered energy as:**

- fuel consumption E<sub>H,gen,in</sub>
- auxiliary energy consumption W<sub>H,gen,aux</sub>

### Generation subsystem simplified energy balance



### **Biomass boiler**

### Generation subsystem simplified energy balance



### **Boiler directive data ???**





# Available methods

- Case specific
  - Based on data declared according to Directive 2002/92/CE
  - Primarily intended for new or recent boilers for which this data is available
- Tabulated values (typology method)
  - Simplification to cover common case and avoid calculation burden to estimate simple repetitive cases
- Boiler cycling
  - Primarily intended for existing systems and condensing boilers

### Case specific method calculation procedure

- Get performance data in standard conditions at 3 reference power levels
  - Efficiencies at 100% and 30% load (according to Directive 92/42/EC)
  - Stand-by losses power [W] at 0% load
- Correct data to take into account actual operating conditions (basically, the effect of water temperature in the boiler)
- Calculate losses power at 30% and 100% from corrected efficiencies
- Calculate losses at actual load by linear interpolation
- Use the same interpolation approach (based on data at 0...30%...100% load) for auxiliary energy calculation



# Boiler directive data ???



- This method of calculation is applicable only to boilers for which the full load efficiency and the 30 % part load efficiency values, obtained by the methods deemed to satisfy Council Directive 92/42/EEC about Boiler Efficiency [1], are available.
- These are net efficiency values (higher efficiency values, referenced to the lower heat value of fuels).
- It is essential that both test results are available and that the tests are appropriate to the type of boiler as defined in Council Directive 92/42/EEC about Boiler Efficiency [1], otherwise the calculation cannot proceed.

The steps are as follows:

- a) Determine fuel for boiler type. The fuel for boiler type must be one of natural gas, LPG (butane or propane) or oil (kerosene or gas oil).
- b) Obtain test data. Retrieve the full-load net efficiency η<sub>Pn,net</sub> and 30 % part-load net efficiency η<sub>Pint,net</sub>
- test results. Tests must have been carried out using the same fuel as the fuel for boiler type.
- c) Reduce to maximum net efficiency values  $\eta_{Pn,net,max}$  and  $\eta_{Pint,net,max}$ . Table A.1 gives the maximum values of net efficiency depending on the type of boiler. Reduce any higher net efficiency test values to the appropriate value given in Table A.1.

Boiler typeEfficiency at<br/>full load<br/>ηPn,net,max<br/>%Efficiency at<br/>30 % load<br/>ηPint,net,max<br/>%Condensing boilers101,0107,0Non-condensing boilers92,091,0

Table A.1 – Maximum net efficiency values

Convert the full load efficiency and the 30 % part load efficiency from net values to gross values. Use the following equation (A1) with the appropriate factor from Table A.2.

$$\eta_{\rm Px,gross} = f_{\rm ntg} \cdot \eta_{\rm Px,net} \tag{A1}$$

#### Table A.2 – Efficiency conversion factors

| Fuel                      | Net-to-gross conversion factor f <sub>ntg</sub> |
|---------------------------|-------------------------------------------------|
| Natural gas               | 0,901                                           |
| LPG (propane or butane)   | 0,921                                           |
| Oil (kerosene or gas oil) | 0,937                                           |

# Additional default data for condensing boilers

Table C.13 – Default fuel data for condensation heat recovery calculation

|                                 |                     | X                      | Fuel                       |                   |                   |                 |  |  |
|---------------------------------|---------------------|------------------------|----------------------------|-------------------|-------------------|-----------------|--|--|
| Property                        | Symbol              | Unit                   | Natural gas<br>(Groningen) | Propane           | Butane            | Light oil EL    |  |  |
| Unit mass of fuel               |                     | •                      | 1 Nm³                      | 1 Nm³             | 1 Nm³             | 1 kg            |  |  |
| Gross calorific value           | Hs                  | kJ/kg<br>or<br>kJ/Nm³  | 35 169<br>kJ/Nm³           | 101 804<br>kJ/Nm³ | 131 985<br>kJ/Nm³ | 45 336<br>kJ/kg |  |  |
| Net calorific value             | Hi                  | kJ/kg<br>or<br>kJ/Nm³  | 31 652<br>kJ/Nm³           | 93 557<br>kJ/Nm³  | 121 603<br>kJ/Nm³ | 42 770<br>kJ/kg |  |  |
| Stoichiometric dry air          | Vair,st,dry         | Nm³/kg<br>or<br>Nm³/Nm | 8,4<br>Nm³/Nm³             | 23,8<br>Nm³/Nm³   | 30,94<br>Nm³/Nm³  | 11,23<br>Nm³/kg |  |  |
| Stoichiometric dry flue gas     | $V_{\rm fg,st,dry}$ | Nm³/kg<br>or<br>Nm³/Nm | 7,7<br>Nm³/Nm³             | 21,8<br>Nm³/Nm³   | 28,44<br>Nm³/Nm³  | 10,49<br>Nm³/kg |  |  |
| Stoichiometric water production | m <sub>H2O,st</sub> | kg/kg<br>or<br>kg/Nm³  | 1,405<br>kg/Nm³            | 3,3<br>kg/Nm³     | 4,03<br>kg/Nm³    | 1,18<br>kg/kg   |  |  |

Table A.3 – Equation numbers for different boiler types

| Boiler type                      | Non-condensing |            |        |            | temperature | Condensing |            |        |            |
|----------------------------------|----------------|------------|--------|------------|-------------|------------|------------|--------|------------|
|                                  | Gas or LPG     |            | Oil    |            | Low         | Gas or LPG |            |        |            |
|                                  | On/off         | Modulating | On/off | Modulating | •           | On/off     | Modulating | On/off | Modulating |
| Regular boiler                   | 101            | 102        | 201    | X          | $\bigcirc$  | 101        | 102        | 201    | х          |
| Istantaneous combi boiler        | 103            | 104        | 202    |            | x           | 103        | 104        | 202    | x          |
| Storage combi boiler             | 105            | 106        | 203    | ×          | x           | 105        | 106        | 203    | x          |
| Combined primary storage<br>unit | 107            | 107        | x      | x          | x           | 105        | 106        | x      | x          |
| ¢.(                              | and the second |            |        |            |             |            |            |        |            |

Table A.4 – Seasonal efficiency calculation equations  $\eta_{gen}$  for natural gas boilers and LPG boilers



slide 19

### Boiler cycling generation energy balance



# Boiler cycling method

- For single stage burners, the calculation interval is divided into two basic operating conditions, with different specific losses:
  - Burner ON time, with flue gas and envelope losses
  - Burner OFF time , with draught and envelope losses
- Loss factors are given as a percentage of combustion power (input to the boiler)
- Loss factors are corrected according to operating conditions (water temperature in the boiler, load factor)
- The required input load factor to meet output requirement is calculated
- Modulating and multistage boilers are taken into account with a third reference state: burner ON at minimum power
- Condensation heat recovery is taken into account as a reduction of flue gas losses with burner ON



#### BOILER CYCLING METHOD: LOSSES WITH BURNER ON



#### BOILER CYCLING METHOD: LOSSES WITH BURNER OFF



slide 24

# Modulating boilers





#### BOILER CYCLING METHOD: LOSSES WITH BURNER ON AT MINIMUM POWER (MODULATING AND MULTI STAGE BURNERS) MINIMUM POWER IS THE SET VALUE (TYPICALLY 25...50% OF MAX. POWER)

# Condensing boiler



#### Condensing boiler.

The furnace is in the high temperature upper part of the boiler

#### **Condensing counter-current** heat exchanger

Flue gases cool-down whilst doming down

Return water heats up whilst coming up.

**Condensate** falls on the bottom to be discharged

slide 27

# Flue gas temperature



# Why 3 methods

No single method is the correct solution for all cases. A too simple method may not be able to show the effect of

improvements whilst

A detailed method may be time wasting for common repetitive situations.

- The boiler typology method aims to extreme simplicity.
- The case specific method is meant to use as far as possible boiler directive data.
- The boiler cycling method is meant to deal with existing boilers/buildings, to keep a connection with directly measurable parameters (flue gas analysis) and to calculate operating performances of condensing boilers.